Proof of the Undecidabilty of FO
Mathematical Logic 11 Proof of the undecidability of FO
Undecidability of FO
Basic Thoughts of the Proof
We’ve already proved that Π halt is not R-decidable by using Π’halt ⩽m Π halt.
So we only need to show that Π halt ⩽m FO.
i.e We have to construct a reduction.
P: □ -> halt ⇔ |= φP
Main Target: Build φP
Configuration of the Register Machine
引入Configuration 格局的概念
我们定义一个(n + 2) 元组:
(L,m0,m1,…,mn)
L表示当前这一条指令,mi表示第i个寄存器中存储的字符串中 | 的个数(若A = {|})
显然这样的(n + 2) 元组可以刻画程序的行为
初始状态(0,0,…,0)
停机时状态(k,m0,m1,…,mn)
Reduction Overview 1 : S-Structure
定义一种关系:
R^P := {(L,m0,m1,…,mn) | (0,0,…,0) -> (L,m0,m1,…,mn)}
程序可达格局
So We need that:
1.定义一个公式 ψP decribes R^P
2.P: □ -> halt ⇔ (k,m0,m1,…,mn) R^P
所以可以建立如下的S-strcutre
Reduction Overview 2
The desired ψP should satisfy the following two properties:、
Finally , we set:
We can easily proved that P: □ -> halt ⇔ |= φP
The Constructuction of ψP
是一个对指令类型的分类讨论
Proof of the Undecidabilty of FO
https://janezair.site/2025/05/17/Mathematical-Logic11/