Proof of the Undecidabilty of FO

Mathematical Logic 11 Proof of the undecidability of FO

Undecidability of FO

Undecidability of FO

Basic Thoughts of the Proof

We’ve already proved that Π halt is not R-decidable by using Π’halt ⩽m Π halt.

So we only need to show that Π halt ⩽m FO.

i.e We have to construct a reduction.

P: □ -> halt ⇔ |= φP

Main Target: Build φP

Configuration of the Register Machine

引入Configuration 格局的概念

我们定义一个(n + 2) 元组:
(L,m0,m1,…,mn)

L表示当前这一条指令,mi表示第i个寄存器中存储的字符串中 | 的个数(若A = {|})

显然这样的(n + 2) 元组可以刻画程序的行为

初始状态(0,0,…,0)

停机时状态(k,m0,m1,…,mn)

Reduction Overview 1 : S-Structure

定义一种关系:
R^P := {(L,m0,m1,…,mn) | (0,0,…,0) -> (L,m0,m1,…,mn)}

程序可达格局

So We need that:
1.定义一个公式 ψP decribes R^P
2.P: □ -> halt ⇔ (k,m0,m1,…,mn) \in R^P

所以可以建立如下的S-strcutre

S-Structure

Reduction Overview 2

The desired ψP should satisfy the following two properties:、
P1 & P2

Finally , we set:
Construct φP

We can easily proved that P: □ -> halt ⇔ |= φP

The Constructuction of ψP

是一个对指令类型的分类讨论


Proof of the Undecidabilty of FO
https://janezair.site/2025/05/17/Mathematical-Logic11/
Author
Yihan Zhu
Posted on
May 17, 2025
Updated on
May 18, 2025
Licensed under